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Abstract

The report related to milestone no. 8: Review and results validation on integration on active casings
based on distributed architecture with remote sensing.

Although noise reduction in casings through active control methods appears plausible and promis-
ing, the benefits of these methods may still be constrained by computational complexity and physi-
cal design limitations. This report highlights recent advancements addressing these challenges and
discusses specific developments, such as the use of distributed architectures and remote sensing
techniques, to enable the practical implementation of active control methods.
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Chapter 1

Introduction

Prolonged exposure to environmental noise has become a growing concern due to its detrimental
effects on human health that encompass both auditory and non-auditory impacts [1]. Significant re-
search would be required to reduce these noise levels. In general, mitigation measures for noise pol-
lution can be implemented at the noise source, along the propagation paths, or at the receiver’s end.
Although there are various strategies available, each approach comes with its own set of challenges
and limitations. Source-based measures, such as quieter machinery or operational changes, are often
the most effective but can be difficult to implement, as they typically involve multiple stakeholders.
Measures along the propagation paths, such as noise barriers or sound-proof windows, can reduce
noise levels but may require significant investment and space. Finally, noise can be mitigated at the
receiver’s end, such as personal protective equipment. While this method may be the easiest to im-
plement and therefore the most practical, it does not address the root cause of the problem. This
report primarily focuses on noise mitigation methods applied at the source, in particular to noise-
controlling casings that enclose the source in a sound-absorbing casing, thereby isolating it from its
surroundings [2]].

The noise reduction techniques typically utilised in a noise-controlling casing are classified to
passive and active methods. Passive noise control (PNC) methods, which rely on sound insulation
and absorption [3]], typically require the material thickness to be of a similar order of magnitude
as the acoustic wavelength. Consequently, PNC methods are generally more effective at high fre-
quencies — although numerous prior studies have addressed this limitation by designing solutions
specifically for lower frequencies, often making use of metamaterials [4)]. In contrary, active noise
control (ANC) methods use secondary loudspeakers that generate a counteracting signal, which is
designed to create destructive interference with the unwanted sound within the targeted area [5].
This technique, on the other hand, will be more suited for lower frequency regions, since the global
noise reduction performance will lose its effectiveness with an increasing frequency [6,[7]. Generally,
these two methods are often combined together to give the best overall noise reduction across the

frequency spectrum.

Although the concept of ANC systems was proposed as early as 1934 [8], with notable achieve-
ments in the 1950s [9,[10]], significant challenges persisted during implementation. These challenges
stemmed from the complexity and inflexibility of analogue circuits, as well as the complexity of
debugging procedures with the electronics available at the time, making precise filter design ex-
ceedingly difficult. Even minor errors in phase or amplitude could lead to an unintended increase in
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noise power rather than effective cancellation. This situation changed with the introduction of digital
signal processors (DSP), driven by the rapid advancements in microelectronics and landmark algo-
rithmic developments during the late 1970s and 1980s. Digital systems addressed the limitations of
analogue circuitry by enabling adaptive filtering [11]], which provided not only precise and stable
performance but also the flexibility to dynamically adjust system parameters in a changing noise
environment. The introduction of the filtered-x least mean squares (FXLMS) algorithm [12] enables
effective adaptation of the control filter to minimise unwanted noise by accounting for secondary
path dynamics, which helps avoid the potential instability that can arise when using conventional
least mean square (LMS) algorithms in active noise control applications. These innovations marked
a turning point in the evolution of ANC systems, making them practical for a wide range of applica-
tions, including noise-controlling casing. A more detailed review in the history and development of
ANC systems can be found in the following papers [13},[14].

In the context of active noise-controlling casings, increasing the number of secondary sources
and error sensors is often desirable for achieving better global noise reduction. However, implement-
ing the FXLMS algorithm in a fully centralised multichannel system (also known as the Multiple
Error FXLMS algorithm, MEFXLMS) can present practical challenges. Specifically, the computational
and memory requirements of the multichannel FXLMS algorithm increase with the number of sec-
ondary sources and error sensors [5], potentially exceeding the computational capacity of current
DSP units. When DSP hardware capabilities are limited, a more efficient algorithm becomes nec-
essary. Although various algorithms, such as sparse adaptive filtering, can be used to reduce com-
putational complexity [5]], these approaches often involve trade-offs, such as a reduced convergence
speed, which would be suboptimal in certain scenarios. One potential solution is to decentralise the
controller, as originally proposed in [15], by distributing the computational load across multiple
DSP units. However, purely decentralised architectures that lack collaboration or the exchange of
local information across multiple processors may underperform compared to centralised systems,
especially in scenarios where strong coupling exists between secondary sources and error sensors.
In such cases, the absence of coordination can lead to suboptimal control performance. Distributed
architectures [16] can mitigate this limitation by enabling network communication between multiple
processors, as will be further explored in Chapter 3]

The second challenge in active casing applications lies in the placement of error sensors. To ef-
fectively suppress sound radiation, error sensors are typically required to be positioned away from
the casing to monitor and control the acoustic noise. However, in some specific active casings, the
placement of physical sensors is constrained to the surface of the casing, thereby limiting their ef-
fectiveness. In such scenarios, virtual sensing (VS) techniques [17]] provide a practical solution by
using signals from physical monitoring sensors to estimate error signals at remote locations. These
techniques, which enable effective control despite physical limitations, will be explored in greater
details in Chapter 4.

This report shall provide a review on the integration on active casing based on distributed ar-
chitecture equipped with remote sensing. The report is structured as follows: Chapter 2 formally
introduce the concept of active casings and some of the proposed non-distributive ANC algorithms
used to reduce the computation complexity in the multichannel system; Chapter[3|and 4 shall discuss
the distributed algorithm and virtual sensing techniques typically used in an active control system,
respectively; Chapter [5|shall then discuss the integration of these techniques in an active casing; and

Chapter [6]draws conclusion.
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Chapter 2

Active control of casings

This chapter shall formally introduce the non-distributive active control methods used to reduce
noise radiation coming out from an enclosed casing. Section 2.1 shall first describe the different types
of casing used in control, as each of their characteristics will introduce different modeling complex-
ities to the active control problem [2]. Section 2.2 shall then present the various non-distributive

control algorithm commonly used in active casings.

2.1 Casing used for active control

The casings types can be characterized into rigid casing [2, [18] and light-weight casing [19} [20].
Finally, it can be applied to off-the-shelf devices as long as their casings’ walls can be subjected to
vibration forces (real casing) [21]).

Figure 2.1: Photographs of the rigid active casing [22].
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Rigid casings

In rigid casings, all walls are constructed using either single or double panels. Each panel is secured
to the structure with screws embedded in the frame and clamped using an additional steel square

frame (Figure 2.1).

Lightweight casings

The lightweight casing was constructed without a dedicated frame (Figure 2.2). This design led to
increased vibrational coupling between the individual walls, as well as coupling through the acous-
tic field inside the casing and, to a lesser extent, the external field. Additionally, the absence of a
rigid frame meant the walls were directly connected to each other, resulting in boundary conditions
that no longer behaved as fully clamped. Instead, the boundary conditions were more accurately

characterized as being elastically restrained against both rotation and translation.

Figure 2.3: A Photograph and schematic of a real casing of a washing machine [24].
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Real casings

Real casings refer to a real, mass-produced device casing. One of the most common examples is the
washing machines (Figure 2.3). The real device casings are often highly irregular and inhomoge-
neous. Each wall exhibits distinct characteristics, such as bends, embossments, and other features,
making it significantly more challenging to fit a mathematical model to each wall.

The casing forms a three-dimensional structure with strong couplings between the walls, similar
to the lightweight casing. However, the unique nature of each wall and the structural separations
are more apparent. To simplify the analysis, each wall is considered individually for determining
actuator placement.

2.2 Non-distributive adaptive control algorithms

Noise-Controlling casings has been extensively enhanced and equipped with a variety of advanced
control algorithms. The active control strategy used in the Noise-Controlling Casings primarily falls
under the Active Structural Acoustic Control (ASAC), which primarily relies on a combination of
passive noise barriers and vibration actuators [25},26),[27]]. By controlling structural vibrations, ASAC
effectively reduces noise transmission. When carefully implemented, it not only minimizes noise in
specific local areas but can also achieve global noise reduction [28]].

The algorithms used to realize ASAC are similar to those in ANC systems. Section 2.2.1 provides
an overview of the MEFxXLMS algorithm commonly employed in ANC systems, followed by a discus-
sion of non-distributive algorithms typically used to address computational complexity challenges
in Section

2.2.1 Multiple-Error FxXLMS (MEFXLMS) algorithm

x(n) d(n) e(n)
Tl BT

Figure 2.4: FXLMS for a broadband feedforward system, where S(z) represents the estimated secondary path.

Consider a generic multichannel control system comprised of I reference signals, | secondary
sources, and K error sensor. The MEFXLMS algorithm, as illustrated in Figure 2.4, needs to know
all the acoustic channel responses since it is based on the filtered-x scheme. Therefore, the acoustic
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channels that link each secondary source with each error sensor must be estimated in a previous
stage. The estimated acoustic channel between jth source and kth sensor is denoted by §j;, and w;;
stands for the adaptive filter that links reference signal x;(n) with jth secondary source. The central-
ized controller recursively computes a solution for the I -] adaptive filters as follows

K
wij(n) = wij(n=1) = ) vije(me(n), (2.1)
k=1

where the [L x 1] vector w;;(n) is used in Figure 2.4 to filter the ith reference signal and obtain the
corresponding signal contribution to secondary source y;(n). Constant y is the step-size parameter
and v;jx(n) denotes a [L x 1] vector obtained by filtering the ith reference signal x;(n) with the M-
length estimated acoustic channel §;:

vijk(n) =X;(n)$jk, (2.2)

where X;(n) is a circularly arranged matrix of the last M + L samples of x;(n):

x;(n) xi(n—1) .- xi(n—-M+1)
X.(n) = xi(n:— 1) xi(n:—2) xi(n—:M +2) . (2.3)
xi(n—L+1) x;(n—-L+2) -+ x;(n—(L+M)+2)

Once the filter is calculated in Eq. (2.1), the j-th output signal that feeds the correspondent actu-
ator is obtained as ,
yi(m) =) whm[Xi(m)]e1), (2.4)
I=1

where [X;(n)].1) is the [L x 1] vector formed by the first column of X;(n).

It should be noted that in Eq.(2.1) all the error signals e;(n) are necessary for the computation of
each filter w;;(n), hence the requirement of a centralized processor.

2.2.2 Other non-distributive control algorithms used in active casings

Various authors have developed and evaluated multi-channel implementations of these algorithms,
as presented in [29,[30} [31]] and [32]. Nevertheless, multi-channel FXLMS-based algorithms, such as
those described in [33} [34], remain favored in certain applications due to their simplicity and ease
of implementation. The tuning process becomes more complex as the system size increases, and the
MEFXLMS algorithm becomes computationally demanding.

To mitigate this, one approach is to use only a single error signal at any given time, with des-
ignated intervals for switching between error sensors. The authors, in [28]], declared this approach
as Switched-Error FXLMS (SEFXLMS). The algorithm was tested on the active casing noise control
model, exhibiting the same steady-state noise reduction as MEFXLMS algorithm. However, the slow
adaptation rate of the SEFXLMS leads to a significant reduction in convergence rate as a trade-off
to the reduced computational complexity. The Switched Multiple Error FxXLMS (SMEFXLMS) is an
extension to the SEFXLMS algorithm [35]], it has a convergence rate and computational load between
the performances of the SEFXLMS and the MEFXLMS. Figure 2.5 compares the performance of the

MEFXLMS with SEFXLMS and SMEFxXLMS reductions for simulations performed for a lightweight
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casing at a 150 Hz tone disturbance. This system uses 21 actuator and 5 error microphone. Thus, the
switching matrix is equal to:

S O R O O O
S = O O O O
_ O O O O O

S O O O = O
S © O = O O

o 0o o o o —

G| uses the simplest variant with one active error microphone in this case.

Power (dB)
Power (dB)

Time (s)

20 — Le}ﬂ mif:roppone!

Power (dB)

Power (dB)

—_ 10
[a) —~ 8
2 s 6
0] = 4
3 =
o 0
0 0.005 0.01 0.015 0.02
Time (s) 1 [1]
without control SEFXLMS, G, slow =i=i-.-..
MEFXLMS —— SEFXLMS, G,

Figure 2.5: Error microphone signals power and time needed to obtain 20 dB noise reduction for different
control algorithms (150 Hz tone, normalized step size y,, = 0.005, lightweight casing). Adapted from [36]].

The “slow” variant refers to the case where, after switching errors, the adaptation process for Ng
samples is disabled. In this case, filtered reference signals are calculated for at most N, error signals.
To ensure proper control filter weight updates, Ng previously filtered reference signal samples are
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required, and the filtered-reference filtering must be enabled in advance, before the error signal is

activated.

The “slow” variant operates approximately 2 times slower than the SMEFXLMS, G case due
to the disabled adaptation phase. This comes at the expense of increased computational load, as it
requires the calculation of higher number of the secondary paths associated with the next active
error. Both variants are slower compared to the MEFXLMS algorithm. When convergence speed is a
critical factor, the SMEFXLMS, G variant is recommended. For a detailed description of the system

and conclusion, refer to [36].
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Chapter 3

A review of distributed algorithms for
active control system

This chapter introduces the use of distributed algorithms in a typical multichannel ANC system.
Section [3.1] provides a brief introduction to distribution networks, followed by an explanation of the
classical Distributed MEFxLMS algorithm used in ANC systems in Section 3.2. Finally, a literature
review of various other distributed algorithms is presented in Section

3.1 Introduction of distributed networks

The concept of distributed networks in ANC systems is closely inspired by the capabilities and ver-
satility of wireless sensor networks (WSNs), which have originally demonstrated their potential in
decentralised systems across various applications. WSNs offer a cost-effective and scalable platform
for implementing distributed control systems due to their ability to sense, process, and communicate
data across spatially distributed nodes [37]. The potential of WSNs was evident from the beginning,
with the proposal of various acoustic applications [38], leading to the development of specific wire-
less acoustic sensor networks (WASNs) whose sensor devices are microphones. These microphones
are usually connected to a processor with communication and computation capability. Applications
that make use of this kind of acoustic nodes are numerous and references therein, but they focus on
the estimation of a standard signal or parameter that can be measured by all the nodes [39] or on
the estimation of node-specific signals sharing some common properties or parameters [40]. Another
typical feature of a node is related to its configuration: the acoustic node is usually composed of a
microphone plus a processor, where the processing unit is dedicated to recording, control, and trans-
mission tasks and can eventually perform some signal processing algorithms before transmission.
However, this typical node structure needs to be modified in two aspects for applications involv-
ing sound control in general and particularly for active noise control (ANC) systems. First, the node
should be able to act on the environment to control the sound rendering; that is, the node should be
able to emit sounds through a loudspeaker or actuator. Second, the network should focus on estimat-
ing a particular signal or related parameter and designing the signals that will feed the loudspeakers
and control the sound field. A generic acoustic node has a specific computation capability to process
signals that can communicate to other nodes to exchange local and network status information and
that are also able to act on their environment. The node can record signals through one or more mi-
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Figure 3.1: Single-channel acoustic node within a ring topology network. [41]]

crophones (sensors) and emit sound signals via loudspeakers (actuators). In addition, nodes should
use the network topology to process their signals properly. Some common topologies are the total dif-
fusion networks, where all nodes are interconnected with the rest of the nodes; the mesh networks,
where each node can communicate with a particular set of nodes; the tree networks, where commu-
nication between nodes is hierarchical; and the ring networks, where communication between nodes
follows an incremental ordering along the network. Figure 3.1 shows a illustration of the schematic
of an acoustic node within a ring topology network as an example.

3.2 Distributed MEFXLMS (DMEFxXLMS) algorithm for ANC

Consider a generic multichannel control system comprised of I reference signals, ] secondary sources
and K error sensors. Also, a WASN of N single-channel nodes that will support an ANC system
composed by N error sensors and N secondary sources. The objective of each node is to obtain its
own adaptive filters such that they approach the minimization of global error but rely only on local
data and some proper network information and distribute the computational burden among the
different nodes.

Let us define a global [ILN x 1] filter vector w(n) as the ordered concatenation of all the filter
vectors implemented at each node

T

w(n) = [w] (n),w] (n),..., Wk

.,wN(n)]T, (3.1)

T
[Wlk n), szk(n),...,wITk(n)] contains the IL filter coefficients that will be used at node

k, and w;;(n) was introduced in Eq. (2.1). Consequently we define the [ILN x 1] vector vi(n) similar to

[Vlk

where wy(n

T
w(n)in Eq. (3.1) as vi(n vak(n),...,vI{,k(n)] , where v;i(n) denotes a [IL x 1] vector obtained
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as
vijk(n) Xy (n)
T B I e PO (3.2)
vijk(n) X;(n)

Matrix X(n) is the vertical concatenation of matrices X;(n) defined as

x;(n) xi(n=1) .- xi(n—-M+1)
X.(n) = xi(n:— 1) x,'(n:— 2) .- xi(n—:]\/I +2) ‘ (3.3)
xj(n—-L+1) x;(n—-L+2) - x;(n—=(L+M)+2)

which contain the last L + M samples of all the reference signals x;(n) properly arranged to perform
the filtering.

Once the previous notation is stated, the filter updating equation in Eq. (2.1) can be extended to
the whole network as

N
w(n)=w(n-1)-p ) vi(neg(n). (3.4)

k=1

The main drawback of the distributed network is that each node has access only to its local data,
{ex(n), vk(n)}, thus each node can only calculate its own term in the sum of Eq. (3.4). Even for this
only term, each node must know the secondary path estimates between all the secondary sources
and its own error sensor, §; for 1 <j < N, but this requirement is not so critical since they can be

estimated in a set-up stage.

To deal with a distributed processing, let us assume that the local updating is performed follow-
ing an incremental strategy [39]: for a given time instant #, a complete round is performed along the
network where each node computes its term of the summation in Eq. (3.4), aggregates it to the given
filter vector and passes it to the following node in incremental order. To develop the formulation for

this strategy, Eq. (3.4) is expressed as:

w(n) =w(n—1)—pvi(ne;(n) = uva(njex(n) —---— pvy(n)ey(n). (3.5)

Let us define the local version of the filter coefficient vector w(#n) in node kth as
k —

and assume that at time 7, node k = 1 has available the updated global vector obtained at time n—1,
such that w!(n) = w(n — 1). Then at node k = 1 the following equation can be computed:

wl(n) =w(n—1) - puv(n)e;(n). (3.7)

Then, node 1 passes its local version of the filter vector to node k = 2 and this node updates its
own local version as:
w2 (1) = w' (1) — pva(n)ea(n), (3.8)
Page 14 of 47
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and so on till a whole round is done and at node k = N we obtain
N(n) = wN" () = pon (n)en (), (3.9)
which is equal to the expression of w(n) in Eq. (3.4), that is, the updated global filter can be as the
local version of the vector at the last node w(n) = w™ (1). Therefore, from Eq. (3.7)-(3.9), the general
form of the filter updating at each node can be stated as

wk(n) = wk(n) - uvi(n)ex(n), 1 <k <N, (3.10)

assuming that the local version of the first node vector is given by w’(n) = w™N(n - 1) = w(n —1).

Finally, once the global updated vector at time instant # has been obtained as w(n) = w (n), their
values are disseminated to the rest of the nodes. Notice that only the local vector that corresponds to
the IL coefficients from IL(k — 1)+ 1 to ILk of w(n) defined as

wi(n) = [w(n—1)]1rk=1)+1:10k) - (3.11)

is needed to generate the kth node output signal vy (n):

yi(n) = wi () [X(n)],1), (3.12)

where [X()](. 1) is the [IL x 1] vector corresponding to the first column of X(n) defined in Eq. (3.2).

3.3 Other distributed algorithms used in ANC

The Multiple Error Filtered-x Least Mean Square (MEFXLMS) algorithm is formulated for WASNs
as distributed MEFXLMS (DMEFxLMS), where adaptive filters are calculated and distributed over
a ring topology with incremental communication. It cooperatively addresses the problem of linear
estimation, in which nodes equipped with local computing abilities derive and share local estimates
with their predefined neighbors. The computational burden is then shared among all processors
[39]]. In [16]], they have extended DMEFXLMS to a network whose communication is affected by con-
stant latency. To deal with this latency, the DMEFXLMS has been reformulated, introducing two new
parameters: the first one acts in the meantime between two network information arrivals, decid-
ing if the node adapts itself based on its local measurement or waits for the new network informa-
tion. The second parameter only acts when the network information arrives at each node, providing
different network and local information combinations. In [42], the filtered-x Least Mean Squares
(FXLMS) strategy using a Frequency-domain Partitioned Block technique for the filtering operation
(FPBFXLMS) is presented, which introduces collaboration between nodes following a diffusion strat-
egy. This algorithm outperforms the non-collaborative strategy thanks to the network information
exchanges among the nodes when the network nodes have a specific acoustic coupling between their
acoustic channels.

The diffusion narrowband FXLMS (DNFxXLMS), which is motivated by the practical advantages of
acoustic sensor networks and narrowband FxLMS algorithm, is proposed to overcome the challenges
of heavy computational load and system instability in the multichannel narrowband active noise con-
trol (MNANC) system in [43]]. The DNFXLMS algorithm distributes the computational tasks among
the individual nodes, reducing the computational load on a single controller.

Page 15 of 47



Funded by the
European Union

N
|N_NOV/\ Horizon Europe MSCA Doctoral Network
MSCA Doctoral Network IN-NOVA - Project no. 101073037

The Augmented Diffusion FxLMS algorithm utilizes a neighborhood-based adaptation and node-
based combination approach. In the adaptation phase, all the control filter weight vectors in the
corresponding neighborhood of each node are collocated into an augmented vector, and the node
processor estimates the augmented vector according to the error signal of the node. In the combina-
tion phase, the control filter weight vectors estimated by different neighbor nodes in the adaptation
phase are averaged to update the node’s control filter weights. The simulation results demonstrated
that this algorithm is superior to Multitask Diffusion FXLMS (MDFxLMS), Decentralized FxLMS
(DCFxXLMS) in terms of either noise reduction, computational complexity, or stability. The DCFXLMS
algorithm excels in noise reduction, computational complexity, and stability [44]].

Affine projection algorithms have been shown to speed up the convergence speed of the algo-
rithms. However, affine projection algorithms require matrix inversion, whose calculation is complex
to distribute among the nodes. In [45], a distributed version of the affine-projection-like algorithm
(which avoids matrix inversion) together with an incremental collaborative strategy in the network.
It minimizes the power of the sum of the measured signals at the sensor locations over an acous-
tic sensor network (ASN), improving the LMS-type algorithms’ convergence speed. In this model,
every node can calculate a portion of the sum of the filter updating equation and supply the par-
tial result to the next node to update the coefficients with their respective information. If this step
is performed with an incremental strategy, the last node will have the updated coefficients. Finally,
these coefficients are disseminated to the rest of the nodes to allow the system to generate the ap-
propriate cancelation signals before the next iteration begins. However, the approximated versions
of the multichannel filtered-x affine projection (MFxAP) can efficiently share the processing load
among the nodes, but at the expense of worsening their convergence properties. In [46], the exact
distributed multichannel filtered-x AP (EFxAP) The proposed algorithm obtains the same solution
as the MFxAP algorithm as long as there are no communications constraints in the underlying ASN.
In the EFXAP algorithm, each node can compute a part or the entire inverse matrix needed by the
centralized MFxAP algorithm. A review summary of the distributed algorithm used is given in Table

B.3.1
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Table 3.3.1: Summary of the distributed algorithm used in active control system.

Summary
Reference Algorithm Achivements
[39] Distributed MEFXLMS It is distributed, cooperative, and able
to respond in real-time to environmental
changes.
[16] Distributed MEFXLMS It exhibits the same performance as the

centralized one when there are no com-

munication constraints in the network.
(42] FPBFXLMS It allows every node to update the global

state of the network by using local infor-

mation and assuming some collaboration
with its neighbor nodes, as well. It ob-
tains a good performance in contrast to
the non-collaborative strategy because of
the information of the network state cal-
culated at each node spread all over the
nodes.

(43] DNFxLMS It enables the construction of NANC sys-
tems with a greater number of channels

under the limitation of processor com-
puting power.

(44] ADFxLMS It has the same noise reduction perfor-
mance as the centralized method even if

the acoustic paths are strongly asymmet-
rical.

(45] DxAP It exhibits faster convergence than the
conventional least-mean-squares based

algorithms as well as the same perfor-
mance as its centralized version.

(46] EFxAP It exhibits the fastest convergence and the
highest noise level reduction for any size

of the acoustic network and any projec-
tion order of the AP algorithm compared
to the DMEFXLMS.
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Chapter 4

Virtual sensing techniques

This chapter explores the application of virtual sensing techniques in general ANC systems. While
virtual sensing technique can aid the application of active casing by enabling effective control at a
distance using structural sensors attached to the surface of the casing, or acoustic sensors located
near the casing, its development has primarily been driven by other applications, in particular to
local ANC. In many local ANC applications, such as the active headrest [47,/48,149,(50,51} 52}, [53}54],
a spatially limited control zone can pose severe limitations in system performance. Moving the error
microphones close to the position at which the sound field must be controlled is often not an option.
To alleviate the problem, virtual sensing methods have been used to project control points away from
physical microphones and closer to the location where sound field control is required. The concept is
illustrated in Figure 4.1, where a virtual sensing method is used to move the control position closer
to a listener’s ear.

. Virtual sensor

]

Physical sensor [

Pt

Physical sensor“

Primary noise

\//,

Primary noise .

=

. Controlled noise
Controlled noise

(a) Control at physical sensor. (b) Control at virtual sensor.

Figure 4.1: Local active noise control at the position of A) a physical sensor and B) a virtual sensor [55].

The possibility of moving the cancellation position to locations of interest away from physical
sensors is very appealing and has motivated sustained research on virtual sensing techniques and
their applications for more than thirty years [55,[56]. The virtual sensing problem can be described
as the estimation of the sound field at the desired position, termed virtual microphone' from mea-
surements with monitoring microphones at remote locations. The most prominent virtual sensing

methods used in the context of ANC are presented next.

I This corresponds to the error microphone in conventional ANC.

18



Funded by the
European Union

N
|N_NO\//\ Horizon Europe MSCA Doctoral Network
MSCA Doctoral Network IN-NOVA - Project no. 101073037

4.1 Virtual Microphone Arrangement

The Virtual Microphone Arrangement (VMA) is the first virtual sensing method used in the context of
ANC, introduced by Elliott and David [55]]. The block diagram of the method is shown in Figure
Assuming N, monitoring and N, virtual microphones and N, secondary sources, the signals at the

monitoring and virtual microphones are given by

m=d,+Gpu (4.1a)
e=d.+G.u, (4.1b)

where m € CNn and e € CNe are the vectors of the monitoring and virtual microphone signals,
d;, € CN and d, € CNe are the primary disturbances at the monitoring and virtual microphones,
u € CM the driving signals for the secondary source, and G, € CN»*No and G, € CN*Nu are the
transfer function matrices from the secondary sources to the monitoring and virtual microphones,
respectively. The task of the virtual sensing algorithm is to estimate the signals at the virtual micro-
phones using the monitoring microphone signals. In the VMA, the disturbance field at the monitor-
ing and virtual microphones is assumed to be equal, as shown in the block diagram, and the signals
at the virtual microphone positions are given by

) )¢
L) L)
A Im
Gm
u
A Ve
Ge

Figure 4.2: Block diagram of the Virtual Microphone Arrangement method [55].

During a preliminary identification (tuning, or training) stage, microphones are temporarily placed
in the virtual positions and the transfer functions from the secondary sources to both the monitoring
and virtual sensors are estimated. During the control stage, where the system is in operation, it is
assumed that the primary disturbance at the virtual microphones is identical to that measured at
the monitoring microphone locations and the secondary source signals are projected to the virtual
microphone through the transfer function estimate G..

The performance of the method has been investigated numerically and experimentally in head-
rest applications [52} 53} 57]. It was shown that the controlled points can be effectively moved to
the desired location, but the arrangement is sensitive to errors in the estimation of the primary dis-
turbance at the virtual positions [57]. The estimation inaccuracies increase with frequency where
the assumption of the primary sound field being equal at the physical and virtual microphone posi-

tions does not hold, and the performance of the method degrades. However, at low frequencies, good
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stability and performance under perturbations of the plant responses were consistently reported
[52,153]. Horihata et al. [58] investigated the applicability of the method in locally controlling modal
sound fields in enclosures. The spatial extent of the zones for which at least 10 dB of attenuation was
attained, termed Zones of Quiet (Z0oQ), was found to be comparable to that achieved when a physical
microphone was used at the virtual microphone locations.

4.2 Remote Microphone Technique

The Remote Microphone Technique (RMT), introduced by Roure and Albarrazin, is an extension to
the VMA [59]. To overcome the problem that the assumption of sound field equality introduces in
the VMA, in this method the transfer function from the physical to the virtual microphones, termed
observation filter, is estimated in the identification stage. During control, the filter is used to project
the primary disturbance field to the virtual microphone positions. The block diagram of a purely
feed-forward ANC system incorporating the RMT is shown in Figure where the part enclosed in
the dashed-line rectangle signifies the virtual sensing part.

Figure 4.3: Block diagram of a purely feed-forward active control system with the remote microphone tech-
nique. The red dashed line signifies the virtual sensing part of the Remote Microphone Technique [48]].

The vector v holds the complex strengths of N, primary sources, which, through the transfer
functions Py € CNNv, P, € CNo*Nv and P, € CNe*Nv, generate the disturbance field at the Ny, Ny,
and N, reference, monitoring and virtual microphones respectively. In the absence of control, the
true and estimated primary disturbance at the virtual microphones are

U R
Il

e=0d,=0P v (4.3a)
e =P.v, (4.3b)
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where O is the observation filter that projects the measured monitoring microphone responses to
the virtual microphone positions. Assuming that the source strengths are realisation of random pro-
cesses, the optimal, in the least squares sense, observation filter can be calculated with a Wiener
filtering approach [60]], given by [61]]

Oopt = Sme (Smm+ﬂ1)_1r (4.4)

where [-]7! denotes matrix inversion, Sy, is the power-spectral density matrix of the monitoring
microphone signals and S, the cross-spectral density matrix between the monitoring and virtual
microphone signals. I is an identity matrix of appropriate dimensions and f is a regularisation term
discussed below.

During control, the observation filter is applied to the measured monitoring signals to acquire
the estimate of d,. Following the block diagram of Figure the error at the virtual microphones is
given by [61]]

A

e-e=P.v+Geu—OypiPrv— Oopt(Gm - Gm)+ Ge]u
-G

] ) (4.5)
Gm—Gm)+G.

J

It can be seen that if the plant response estimates G,, and G, are perfect, the performance of the
system depends entirely on the observation filter Oopt through the first term in equation (4.5). An
important drawback of the method is its susceptibility to uncertainties in the transfer functions
from the primary and secondary sources to the monitoring microphones. Perturbations in P, and
errors in Gy, can have a significant impact on the estimation performance since they are multiplied
by the observation filter, including the inverse of a matrix, S,,, which can often be ill-conditioned
[62]. The regularisation term can be used to partially alleviate the problem [62], but this is done at
the expense of decreased estimation accuracy [48].

The optimal filter that minimises the residual errors at the virtual microphone positions is calcu-
lated by minimising the squared error as given by equation (4.5) to get [62]

A

-1 . B
WRMopt = _(GRHMGRM) GRHMoopthmsx)%: (46)

where Gy, = G, + Oopt (Gm - Gm) and [-]H denotes Hermitian transposition.

In a series of studies [54,(63,164], the method has been augmented with head-tracking to allow for
the estimation of moving points. Several observation filters and transfer functions were calculated
and based on the position provided by the head tracker, the appropriate responses were used for
control. Both performance and robustness showed significant improvement when compared to the
static case, where the method can become unstable for large perturbations [65}[66].

Recently, a wave domain strategy utilising the RMT for noise control has been introduced [67,
68]]. It has been demonstrated to be highly effective in controlling the sound field within a three-
dimensional space, resulting in substantial sound reduction within a spherical radius of about 0.3 m.
However, this approach requires a considerable number of microphones and loudspeakers, which
may impede its practical implementation.
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Misol [69] has effectively used the RMT in an ASAC application where the noise radiated by the
sidewall panel in the interior of an aircraft fuselage was controlled at a varying number of virtual mi-
crophone positions. Mean attenuation of about 8 dB with peak values reaching 16 dB were recorded,
however, the mean vibration levels of the panel were increased by up to 26 dB.

4.3 Virtual Microphone Control - Additional Filter

Pawetczyk [47]] proposed the Virtual Microphone Control (VMC) to shift the control points to the de-
sired locations. Other researchers have used the term Additional Filter (AF) method to refer to it [62]
and this is adopted in this report. Like in the VMA and RMT, an initial tuning stage is required. Dur-
ing this phase, physical microphones are temporarily positioned at the virtual microphone locations
and the primary disturbance is minimised there. When convergence has been achieved, filters mod-
elling the transfer function between the monitoring and reference signals are estimated. The filters
embed information on what the monitoring signals should be when the control algorithm has con-
verged and constitutes the target response during control. The method has been found to be robust
to uncertainties in the transfer responses from primary and secondary sources to the physical and
virtual microphones with good performance even at frequencies up to 1 kHz [62}65].

The block diagram of the method during the identification stage is shown in Figure [4.4] The filter
W A is used to minimise the residual noise e at the virtual microphones. After convergence, the
transfer function between the reference signals x, and the monitoring signals m is estimated through
the filter H. The estimate of the monitoring signals from those of the reference microphones when
convergence of control has been achieved is given by [62]]

The optimal additional filter can be calculated following a Wiener filtering approach like the
observation filter in the RMT and is given by [62]]

A

Hopt = (Sxm + GmWAFOPtSXX) S;)}, (4.8)

where Sy, is the power spectral density matrix of the reference signals and S,,, is the cross-spectral
density matrix between the reference and monitoring signals. W ARy 18 the optimal filter that min-
imises the residual noise at the virtual microphones during the identification stage and can be calcu-
lated in the optimal least-squares sense as [62]]

1
. ~H 2 ~H 1
W, =-(6'6.) Gls.esit. (49)
The block diagram of the system during the control stage is shown in Figure The sound
reduction at the location of the virtual microphones is achieved by minimising the difference between
the measured monitoring microphone signals and the monitoring signals when the residual noise at
the virtual positions is minimised. The effective error signal is then given by [62]]

éE=m-m=m —ﬁoptx =d,+ GmWAFx—ﬁoptx =d,+ (GmWAF —ﬁopt)x. (4.10)
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Figure 4.4: The block diagram of the Additional Filter method during the identification stage.

As can be seen in equation (4.10), the additional filter is used to minimise the differences between the
measured monitoring signals and the estimate of these signals when the primary disturbance at the
virtual microphones was optimally controlled. The optimal control filter is then calculated by the
minimisation of the mean squared error of equation to get [62]

WAF = (GII;Ile)_l GII;II (I:IOPthx - Sxm)S;)}- (4.11)

opt

Since the error to be minimised is dependent on the reference signals as shown in equation (4.10),
the method is sensitive to perturbations and uncertainties in the transfer functions from the sources
to the reference sensors P, [62}[65]. On the contrary, it can be seen that uncertainties in the plant
responses or transfer functions from the primary sources to the virtual and monitoring sensors have
minimal impact on the performance [62].

P,
B _
2 PX I x WAF Gm +\Z;
+
: NG
Hop, )
G

Figure 4.5: The block diagram of the Additional Filter method during the control stage.

To address the sensitivity of the method against perturbations in the reference signals, Shi et al.
[70] introduced a variant that incorporates the training of multiple additional filters during the iden-
tification stage. In the control phase, a linear combination of additional filters is employed, chosen

based on the frequency characteristics of the measured reference signals. This approach demon-
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strated performance on par with conventional control at the virtual microphone position for both
bandpass and wideband noise.

Similarly, Zhang et al. [71] proposed a method involving the training of multiple additional fil-
ters during the identification stage. In the control phase, the optimal filter is selected based on the
minimisation of the energy at the virtual microphone position, which is estimated using an obser-
vation filter derived from a minimax optimisation process during identification. This method was
evaluated in an active headrest system, showing significant improvements in performance and ro-
bustness compared to the RMT and AF methods for tonal and bandpass disturbances. However, the
computational complexity of the method was found to be dependent upon the number of trained
additional filters, resulting in a significantly higher complexity than both the RMT and AF.

Shi et al. [72] introduced the Relative Path Virtual Sensing (RP-VS) algorithm, which uses the con-
trol source signals measured to estimate the control signals at the virtual microphone positions
through the use of a filter estimated during the training stage. The algorithm has been shown to
behave similar to the RMT and AF methods under varying conditions of the acoustic transfer func-
tions. The performance of the algorithm was validated in the context of an active-controlling casing
further discussed in Chapter

4.4 Kalman filtering

Petersen et al. [73] introduced a Kalman filtering formulation of an ANC system with embedded
virtual sensing. The method, like the RMT and AF, requires an initial identification stage. The ANC
system is modelled as a state-space system with outputs the monitoring and virtual microphone
signals as [73]

z(n+1)=Az(n)+ Byu(n)+ B,v(n) (4.12a)
en(n)=Cnz(n)+Dyuu(n)+ Dy v(n)+ny(n) (4.12b)
e.(n) = C.z(n)+ Do u(n)+ Do v(n) +n.(n), (4.12¢)

where z are the N plant states, n,,, and n, are the monitoring and virtual microphone noise signals,
v are the N, primary distrurbance signals and e, and e, are the N, and N, monitoring and virtual
microphone signals respectively, with n denoting the discrete time index. In the state space model,
A € RNN is the state space matrix, B, € RV*Ne and B, € RN*M are the secondary and primary
input matrices and Cy, € R¥»N and C, € RN*N are the monitoring and virtual output matrices.
Dy € RVN=Na and D\, € RN=*Nv are the monitoring feedforward matrices and D, € RN*Nu and
D., € RN*Nv are the virtual feedforward matrices respectively. The noise terms n,, and n, account
for the noise at the monitoring and virtual microphones in the identification stage.

The primary signals and the monitoring and virtual noise signals are assumed to be realisations of
white, zero mean random processes and their covariances are estimated at the initial identification
stage. The virtual sensing algorithm that estimates the error signals at the virtual microphones is
given by [55} 73]
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. 2(njn-1)
z(n+1|n) — A_Kmvcm Bu_Kvamu mv u(n) (4 13)
ée(n|n) Ce_Mevcm Deu_Mevau MeV e (Tl)

with K, the Kalman gain matrix and M, the virtual innovation gain matrix, given by

= (APpy Chy + Siny ) R (4.14a)

Kmv
=1\
M, = (CeP oy Ch + Rie ) R (4.14b)

The symbol [-]! denotes transposition, and the matrices S, and Ry, are given by [55]]

Sty =DpyBY + S, B! (4.15a)
Rme = R;e + S;VDEV + Dmvsev + DmVDEV (415b)

where the matrices S, and R, are the covariance matrices between the monitoring signals and the
source and virtual signals and S, is the covariance matrix between the virtual and primary source
signals and are given by [55} 73]

Sow = E[nm(n)vT(k)] (4.16a)
Rine = B[ () g (k)] (4.16b)
Sev = E[ne(n)v" (K)], (4.16¢)

where n and k are discrete-time indices and E[-] is the expectation operator. In equation (4.14) R,
is the covariance matrix of the innovation signals €,,(n) = e, (1) — ey, (n|n—1) and P,y is the unique
solution to the Riccati equation and are given by [55]]

— - -1 — T
Py = AP AT — (AP Cl + Sy ) (Cen Py Ol + Rin ) (AP 1y Cl+ Sy ) +Qy (4.17a)
Rpe = [em(n) egl(n)] = Cumvcg + le (4.17b)

where Q, = B, B! is the covariance matrix of the process noise w(rn) = Byv(n) and Ry, is the covariance
matrix of the measurement monitoring microphone noise given by [55]

Rm :Rm+8;vav+Dmvva+Dva;rnvr (4'18)

with R, being the covariance matrix of the monitoring microphone noise, equal to [73]

Ry = E[np () ny ()] (4.19)

In practice, the state space matrices and covariance matrices presented above need to be known

to implement the Kalman filter. The preliminary identification stage is used to acquire the estimates
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of the matrices and using subspace identification techniques a model in innovation form is estimated
(55}, [73]. In this form, the state space model of equation (4.12)) becomes

2(n+1ln) =Az(nln-1)+B,u(n)+K, [eITneg]T (4.20a)
en(n) = Cz(nn—1)+D u(n)+ ey (1) (4.20b)
ee(1) = Coz(n|n—1) + Doyu (n) + €. (1). (4.20¢)

The white innovation signals covariance matrix is then estimated as [55]]

. [Rme R
= RTme 1%““ (4.21)
mee ee
Then, the Kalman filtering model is implemented as [55) [73]]
, i ¢ S > 1|2(nln—1)
z(n+1|n) — A_Kmvcm Bu_Kvamu Kmv u(n) (4 22)
éc(nln) Ce—-MeyCry Dey—MeyDyy My

em(n)

where the Kalman gain and virtual innovation gain matrices K and M, respectively are calculated
as

A A A A fz N A A N -1
Ry = (AXVCrTn +K ﬁTme (cmxvc; + Rme) (4.23a)
mee
A A A~ AT 2 N A AT 2 -1
M., =(C.X,EL + Rmee)(CmXVCm + Rme) . (4.23b)

In this model, the matrix X, is the equivalent of P ., in equation (4.17a) and is the unique solution
to the discrete algebraic Ricatti equation given by [55]

-1
X, =AX,A' K, (cmxvcg1 + Rme) Ko, +K,R.K.. (4.24)

When the noise covariance is known, the Kalman filter provides an optimal estimate of the virtual
microphone error signals. This formulation accounts for measurement noise in both the monitoring
and virtual microphone signals. However, its high computational complexity limits its practicality
to relatively low-order models. Petersen et al. [73]] compared this method to an FXLMS system for
controlling random noise in a duct, achieving an overall broadband noise attenuation of approxi-
mately 19.7 dB at the virtual microphone’s location, which is about 5.4 dB less than the conventional
FxLMS method. Booij and Berkhoff [74] evaluated the Kalman filtering approach against the RMT in
a "Silent Chair" system, where a broadband primary disturbance was controlled at two virtual po-
sitions near the chair’s headrest. The RMT system outperformed the Kalman filter implementation
due to the FIR filter’s superior capability to estimate high-order models in greater detail than the
state-space representation.
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Halim et al. [75] designed a robust virtual sensing method based on the Kalman filter state space
formulation for Acoustic-Structural Active Control (ASAC) of coupled enclosures. In a subsequent
study, they calculated optimal positions for structural sensors based on the observability of the cav-
ity modes [76]]. Experimental results [77] revealed that the acoustic pressure was effectively reduced
at frequencies around the modal frequencies of the cavity. The method and its performance are dis-
cussed in more detail in Chapter[5
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Chapter 5

Integration of virtual sensings and its
distributed control algorithms in active
casings

In the previous chapter, various distribution control algorithms and virtual sensing techniques were
explored in ANC systems. Building on this foundation, this chapter outlines the implementation of
distributed control and remote sensing strategies within the context of active casing. These strategies,
developed in prior work, aim to enhance the system’s performance and computation copmlexities by
leveraging decentralised control and remote sensing methods.

5.1 Distributed control system implemented in active casings

Most ASAC systems commonly use centralized control architectures, in which a single processing
unit manages the control processes for the entire network of sensors and actuators. Although ef-
fective for small-scale applications, centralized ASAC face challenges in scalability, real-time per-
formance, and robustness to failures in large-scale or complex systems. Recent advancements have
led to the integration of distributed control architectures [78] in ASAC applications[79, /80, [81]], par-
ticularly for large-scale systems with spatially distributed sensors and actuators. These approaches
aim to improve scalability while maintaining the stability of the control system. Figure shows
a comparison of decentralized, centralized, and distributed control architectures. In centralized ar-
chitecture, a single controller is tasked with executing the control processes, whereas decentralized
structures utilize multiple independent controllers for each channel. While similar to decentralized
systems, distributed control architecture relies on collaboration among local controllers to preserve
stability in complex, large-scale setups.

One notable contribution presented in [28] is the implementation of a distributed multichannel
global ASAC system. The focus of this work is the development of a control framework that utilize
multiple sensors and actuators to minimize vibro-acoustic emissions throughout the casing structure.
Multiple dSPACE boards were used as a platform for the distributed ASAC system. Additionally, a
faster variant of the distributed version of the SEFxXLMS control algorithm was introduced in their
framework which reduces the interaction between the boards. Figl5.2] shows the global switching
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Figure 5.1: Schematic of decentralized, centralized and distributed architectures. The difference between (a)
and (c) lies in the collaborative method used by the decentralized controllers.

scheme implemented for the distributed control algorithm. Given that the adaptation switch oper-
ates in a round-robin manner, filtering the reference signal prior to enabling adaptation for each
controlled error signal is considered to be less efficient. Alternatively, enabling adaptation of the
current error signal simultaneously with pre-filtering the reference signal for the next error signal
enhances the convergence rate and eliminates a sample delay for the adaptation.
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Figure 5.2: distributed SEFXLMS algorithm implemented for the noise-controlling casing. "+" refers to enabled
adaptation, "FX" refers to Reference Filtering, "-" refers to disabled adaptation. Reused from [28]

Experimental results demonstrated that the distributed implementation achieved comparable
noise reduction levels to the centralized approach while significantly reducing computational over-
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head. In Fig. 5.3, the convergence performance of two Switched-error FXLMS variants is compared
against the full MEFXLMS algorithm [33]. The SEFXLMS variants achieve the same steady-state at-
tenuation as the original MEFXLMS. However, the MEFXLMS exhibits the highest convergence rate,
followed by the faster SEFXLMS variant, and then the original SEFXLMS.

U e T ' ' " Multi-error FXLMS, p = 0.005 ——
5 . Switched-error FXLMS, u = 0.001 —»—
~10 Switched-error FXLMS (faster variant), u = 0.002 —a—
-20

SN

Error Level [dB]

Time [s]

Figure 5.3: Comparison of performances of the SEFXLMS (old variant), SEFXLMS (faster variant) and the full
MEFXLMS performed at 150 Hz tonal excitation. Reused from [28].

In [21]], the same distributed architecture was used to control a real casing, referring to controlling
the vibration of the panels of a washing machine in this context. The same architecture was used
except that 4 dSPACE boards were used instead 5, due to the rear side of the washing machine
positioned close to a wall. Fig 5.4 displays a photograph of the washing machine that was used for
the experiment setup and it’s dimensions.

Yy r

- -

Figure 5.4: Photograph and dimensions of the washing machine casing. Dimensions are given in [mm]. Reused

from [21].
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The authors used the Leaky Normalized SEFXLMS algorithm as a control algorithm for each
board. The authors also used Internal Model Control (IMC) control method for comparison between
the performances. Table shows the steady state reductions obtained for each error microphone
positioned around the washing machine.

Table 5.1.1: SPL of the noise at the error microphones under two different control strategies (Feed-forward
SEFXLMS Vs IMC). Reused from [21].

Front [dB] Right [dB] Left[dB] Top [dB]

1200 rpm spinning

Without control 73.2 79.1 79.7 72.9
Feed-forward 63.8 69.8 67.0 65.1
IMC 66.4 71.9 72.1 68.5
113 Hz tonal disturbance (6-th harmonic of the spinning noise)
Without control 78.0 84.9 85.0 71.6
Feed-forward 55.7 63.2 55.4 53.0
IMC 53.9 62.5 55.0 53.6

The average SPL reduction at the monitoring microphones for the feed-forward system is 7.4 dB
(around 10 dB average reduction at error microphones), while for the IMC system, it is 4.7 dB (around
7 dB average reduction at error microphones) for the spinning noise. Global noise reduction can be
achieved for tonal signals. Using 113 Hz as a tonal excitation for the noise, which corresponds to the
6th dominant harmonic of the spinning noise, the control system can provide attenuations that can
exceed 13 dB on average using the SEFXLMS distributed setup and around 16 db on average using
the IMC method. Thus, while the IMC method proves superior for tonal excitation, the distributed
SEFXLMS configuration is better in attenuating harmonic disturbances.

5.2 Virtual Sensing Method for Active casing

This section presents the applications of VS in actively controlled casings, encompassing the three
VS methods described in Chapter 4 along with their variants. Each VS system discussed utilises
structural sensors to gather data, which is subsequently employed to estimate sound pressure at
remote locations. The primary focus of the section is on describing the control performance of said
methods, supplemented by additional information insights where relevant.

Remote Microphone-Based Virtual Sensing

The performance of the RMT has been investigated in the context of ASAC by Cheer and Daley [82]
and was compared to the ability of an Active Vibration Control (AVC) in reducing the radiated noise
of an enclosure, shown in Figure 5.5, excited at one of its resonances. The optimal and adaptively
calculated control signals for the RMT-based ASAC and AVC systems were presented in closed form.
18 accelerometers were used to measure the structural response and 4 actuators were acting as sec-
ondary sources. At the initial identification stage, the acoustic and structural plant responses, G,

and G respectively, and the corresponding primary paths, P, and P, were measured and the ob-
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servation filters for 66 virtual microphone positions on a planar grid 0.07 m from the top side were
calculated.

Figure 5.5: Enclosure used to evaluate the performance of an RMT-based ASAC system against an AVC [82].

The acoustic noise attenuation achieved by the RMT-based ASAC system is about 6 dB higher
than that of the AVC as illustrated in 5.6 where the value of the cost function (sum of squared error
signals) against time at the structural and acoustical sensors is shown. The ASAC achieves higher
acoustic noise reduction because it controls the acoustic error signals directly, however, for the same
reason, the vibration reduction is not as effective as that of the AVC [69]. The study demonstrates the
applicability of the RMT method in ASAC applications. However, it is noted that due to the proximity
of the virtual microphones to the casing far-field, global control is not guaranteed. It is suggested that
using acoustic sensors at larger distances from the source could produce better results when it comes
to global noise attenuation.

0 . . . 0
-5t
-5t
~10}
-10t
~15}
m
S 20 < -15
-7 o
25}
=20
=30t
25t
35t
-40 - * * -30 . . -
0 5 10 15 0 5 10 15
Time, s Time, s
(a) Cost function of structural signals (b) Cost function of acoustical signals

Figure 5.6: Convergence of the sum of squared error signals at the (a) structural and (b) acoustical sensors for
the RMT-based (red) and AVC (blue) systems of Figure 5.5 [82].

Auxiliary Filter-Based Virtual Sensing (AF-VS)

In a similar experiment to that described in Section Mazur and Pawelczyk [83], compared the

performance of two ASAC systems, one with AF-based VS embedded and one of controlling the error

signals at the virtual microphones by positioning physical microphones, to an AVC system. The three
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methods were evaluated for an active-controlling casing shown in Figure 5.7a. One microphone is
positioned at 0.5 m from each side of the casing to provide the error signals for the ANC system.
On each panel of the casing three accelerometers were positioned to act as error signals for the AVC
and three actuators, collocated with the accelerometers were used to control the vibrations for all
deployed systems. The AF-based VS system uses the accelerometers as monitoring sensors and the
microphones positions for the ANC system as error sensors. The global radiated noise reduction
was evaluated at three microphones positioned far from the casing denoted as "M1" to "M3" in the
schematic of Figure 5.7b.

5.8m
22m
=
O
Sy
O 1
Right
O O O O
Back | Top | Front Ml o
M3
o] g
Left 5 o
M2
A
(a) Enclosure (b) Experimental setup

Figure 5.7: (a) Enclosure used to evaluate the performance of an AF-based ASAC system against an AVC and
ANC system. (b) The schematic of the experimental setup; "Top", "Front", "Back", "Left" and "Right" denote the
microphones used in the ANC and AF-based ASAC systems as error sensors and "M1", "M2" and "M3" are the
microphones used to evaluate the global attenuation performance of the systems .

The systems were evaluated for tonal and multi-tonal disturbance signals of frequencies from
86 Hz to 196 Hz with a step of 2 Hz, reproduced by a loudspeaker positioned inside the casing. The
spectrum of the signals in the microphones deployed in the far field, "M1", "M2" and "M3", during
control are shown in Figure 5.8 for all three systems and the case of no control. The performance
of the AVC system was found to be very poor with global attenuation being in the order of 1 dB.
The best performance was observer with the ANC system with global noise reduction exceeding
10 dB and the AF-based system providing comparable results. However it should be noted that the
AF-based system does not use microphones during the control phase and the required signals are
acquired by the deployed accelerometers. In more detail, the amplitudes of all microphone signals
are illustrated in Table 5.2.1 for the multi-tonal disturbance signal.

The Relative Path method and comparison with the Remote Microphone and Additional Filter
methods

Shi et al. introduce the RP-VS method briefly described in Section and compared its per-
formance against the RMT and AF methods in an active casing integrating an active feed-forward
control system. Figure[5.9)illustrates the experimental setup, which consists of a variable-speed com-
puter fan acting as the noise-emitting source enclosed within a casing designed to reduce noise while

maintaining airflow for cooling purposes.
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Figure 5.8: The signals at the far field microphones (a) M1, (b) M2 and (c) M3 without control and with control
through the different control systems investigated in [83].

Table 5.2.1: Microphone signal amplitudes for a multitonal disturbance signal used for the evaluation of an
AF-based ASAC, an AVC and and ANC system in [83]. The names of the microphones correspond to those
presented in Figure 5.7b.

Signal amplitude [dB]
Front | Right | Back | Left | Top M1 M2 M3
No control | -24.9 | —=19.5 | —=23.3 | —=24.1 | -21.9 | -20.7 | —-19.0 | —26.4
ANC -47.1 | —46.1 | —41.7 | —41.6 | —38.5 | —=32.9 | -33.4 | -39.2
AVC -25.3 | -20.2 | -23.4 | -24.6 | —22.8 | =21.5 | -19.6 | =27.2
VS-ASAC | —45.0 | —42.8 | —40.1 | —40.6 | -35.7 | -31.7 | -32.6 | —38.1
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The casing is equipped with multiple active control sources (loudspeakers), distributed near the
openings to generate anti-noise waves. These waves counteract the noise emitted by the internal
machinery, significantly reducing the sound pressure levels (SPL) in the target ZoQ. The setup also
includes several monitoring microphones positioned around the casing to measure error signals,
which are used to adaptively tune the control filters. The absence of physical microphones directly
within the ZoQ is addressed by employing virtual sensing algorithms, namely the RMT, AF and RP
methods, to estimate the error signals virtually.

Virtual Error

Microphone

Monitoring

Microphone

Control Source

Reference

Microphone

Figure 5.9: Schematic and picture of the experimental setup of the noise-cancelling casing, including the po-
sitions of the control sources, noise-emitting machinery, and monitoring microphones [72].

During the identification stage, the transfer functions between the sources and the reference,
monitoring and virtual microphones, Py, P, and P, respectively and the plant responses G, and
G., were estimated with the fan running at 30% of its full capacity. In the control stage, the fan was
run at 30% and 100% of its maximum speed to evaluate the performance of the systems at variable
operating conditions. The power spectra in the frequency range from 400 Hz to 1.6 kHz with the
three VS systems and without control are illustrated in Figure 5.10 for both noise source conditions.
The case of directly reducing the signals at the virtual microphones, denoted as FXLMS in the figure,
is also shown and acts as a baseline, like in the study presented in [83]].

When the conditions during control are identical to those used to "train" the systems, the perfor-
mance of the AF method is very close to the FXLMS baseline system, and the other two VS systems
provide comparable attenuation, as illustrated in Figure 5.10a. All three systems achieve significant
attenuation at the virtual microphone locations over a wide spectrum up to frequencies exceeding
2 kHz. Figure 5.10b shows the spectra when the fan is running at its full workload. Under these
conditions, all three methods continue to provide significant broadband noise reduction without re-
training, but no method shows significant performance gains over the other two over the full band-
width under consideration. This study demonstrates the suitability of the three VS methods for use in
active casing systems, showcasing that they can effectively be used to reduce broadband noise at vir-
tual microphone positions across varying source operational conditions, underscoring the methods’
robustness in diverse, dynamic environments.

Page 35 of 47



Horizon Europe MSCA Doctoral Network
IN-NOVA — Project no. 101073037

Funded by the
European Union

IN-NOWA

MSCA Doctoral Network

=== ANC off (Tuning Condition: 30% Full Speed)
===ANC on (AF-VS Method)

ANC on (RM-VS Method)
------- ANC on (RP-VS Method)

ANC on (FXLMS Baseline)

Power (dB)

220

30 44

2000
Frequency (Hz)
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Figure 5.10: Power spectra at the virtual microphones for the RMT, AF and RP methods when the fan acting
as noise source is run at (a) 30% and (b) 100% of its maximum speed. The systems are "trained" with the fan
running at 30% of its maximum speed [72].

Virtual microphone sensing through vibroacoustic modelling and Kalman filtering

As described in [74] by Booij and Berkhoff and briefly discussed in Section [4.4} the Kalman filter can
only be applied to low-order models due to its computational complexity. This was understood by
van de Walle et al. [84], and they designed an ASAC system combining the Kalman filtering virtual
microphone approach with a reduced-order (RO) finite-element model of a strongly coupled vibroa-
coustic casing shown in Figure 5.11a. The model was transformed into a first-order state-space repre-
sentation and was introduced in the Kalman filtering formulation of the virtual sensing system. For
the evaluation of the VS method the experimental setup illustrated in Figure 5.11b was used where a
variable number of microphones denoted as "M1" to "M4" were used and the microphones "R1" and
"R2" were used as reference microphones to evaluate the estimation performance. The system was
excited with a modal hammer.

A system of 22993 Degrees-of-Freedom (DoF) was reduced to a model with only 68 DoFs, achiev-
ing a discrepancy between the two models smaller than about 2 x 107> across the spectrum spanning
the frequencies from DC to 400 Hz. This model was employed in a Kalman filtering formulation to
estimate the sound field within the casing, incorporating real-time sensor measurements. Figure 5.12
presents the estimated, measured and simulated pressure signals at the microphone "R2" from two
distinct time intervals of approximately 0.15 s, starting at 0 s and 1 s. A strong agreement between
the estimated and measured responses is demonstrated. However, while the simulations initially
align well with the reference data, discrepancies arise over time due to error accumulation, lead-
ing to deviations from the actual pressure. It is important to note that the system was designed to
ensure the long-term stability of the Kalman filter and due to the use of an RO model it allowed a

numerically stable real-time implementation.
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(a) Casing. (b) Experimental setup.

Figure 5.11: (a) The casing used to evaluate the performance of a Kalman filter VS used with a RO model of
the casing, and (b) the experimental setup, where "M1" to "M4" are the monitoring microphones and "R1" and
"R2" are reference microphones used to evaluate the performance of the system [84].

Halim et al. [75] designed an ASAC system incorporating virtual sensing through a Kalman fil-
tering approach. A robust virtual sensing system was designed by optimally combining multiple
Kalman sub-filters based on a minimax optimisation. The performance of the system was evaluated
through numerical simulations of a modal vibroacoustic system with introduced uncertainties. The
acoustic pressure generated by a volume velocity source inside the cavity of a casing was estimated
with a single structural sensor. The pressure response controlled by a volume velocity source at a vir-
tual sensor location inside the casing cavity is shown in Figure 5.13. The best and worst tonal active
control performance is shown along with the uncontrolled pressure for comparison.

The performance of the virtual sensing system was found to be robust to uncertainties in the
system. The ability of the system to sense the interior sound pressure at virtual microphone loca-
tions was demonstrated, and performance was shown to increase at frequencies corresponding to
the modes of the cavity. Control performance was found to be dependent on the estimation accuracy,
which in turn is critically dependent on the positioning of the structural sensor to achieve observ-
ability of a large number of modes. However, good control performance was achieved even at the
worst-case dynamics corresponding to the highest uncertainty in the system.

In continuation of that research, the same authors investigated the optimal placement of struc-
tural sensors numerically to estimate the pressure field inside an acoustic-structural coupled enclo-
sure accurately. The average output energy of the structural sensor generated by a spatially varying
point source was used as the metric to optimise its position. The results of the study show that the
metric is correlated with the observability of the cavity and panel modes in an additive manner. Im-
portantly, it was demonstrated that to effectively detect a cavity mode, the structural sensor must
be able to observe multiple structural modes that are strongly coupled to the acoustical mode. Tak-
ing into account both acoustical (cavity) and structural modes, an optimisation problem based on
weighted observability of the modes, both structural and acoustical, was introduced to identify the
optimal structural sensor position.

Halim and Cheng [77] experimentally investigated the work presented in [75} [76], focusing on
active noise control within a casing. The study deployed loudspeakers as both primary and sec-
ondary sources, an accelerometer for structural measurements, and a microphone to measure pres-
sure within the cavity. The experimental setup is illustrated in Figure 5.14. A Kalman filter virtual

sensor was implemented following the methodology outlined in [75], and the FXLMS method was
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Figure 5.12: Measured, estimated and simulated pressure at the microphone position "R2" of Figure 5.11b at
two time-spans of 0.15 s starting from 0 s and 1 s [84]).
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Figure 5.13: The (a) best and (b) worst pressure control performance inside a casing cavity achieved with a
Kalman VS system. The solid line denotes (-) the primary disturbance and the dashed lines (- -) the actively
controlled pressure for tonal excitation [75].
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employed to realise the control system. The z dimension of the enclosure was variable to either
0.63 m or 0.64 m, and the upper clamps of the panel at which the accelerometer was attached could
be removed; this allowed the investigation of the robustness of the system’s performance under vari-
able boundary conditions changing the dynamics of the panel.

Figure 5.14: The experimental setup deployed in to explore the performance of a Kalman filtering virtual
sensor described in [75].

The objective was to achieve the highest possible attenuation under different conditions with a
single Kalman filter implementation. The control performance under four different cases, one with
the clamps and one without for each enclosure height, are depicted in Figure 5.15. It is demonstrated
that the dominant modes are effectively sensed by the virtual sensor and controlled by the system
under all conditions examined in the study. At some frequencies around 250 Hz, the acoustic pres-
sure is slightly increased in all cases. However, the broadband sound pressure level is significantly
reduced due to the controlled modes.
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Figure 5.15: The sound pressure attenuation at a virtual microphone inside a casing achieved with a virtual
sensing control system combining a Kalman filter virtual sensor and an FxLMS controller for four distinct

cases [77].

Different approaches to using the Kalman filtering formulation to design a virtual sensor have
been demonstrated above. In [84]], a reduced-order finite element model was used to describe a vi-
broacoustic system in a state-space form and implement a virtual sensor. The combination of multi-
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ple Kalman sub-filters was shown to provide a robust virtual sensor that was validated experimen-

tally and through numerical simulations.
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Chapter 6

Conclusion

While active control methods in casings show great potential for noise reduction, their effective-
ness may still be limited by challenges such as computational complexity and physical design con-
straints. Although various approaches have been proposed to address computational complexity,
such as sparse or decentralised algorithms, a trade-off between complexity and control performance
often remains inevitable. Distributed algorithms offer a solution by mitigating this trade-off, as they
improve control performance by distributing the workload across multiple processing units. These
algorithms also facilitate communication between units, enabling a more coordinated and efficient
control strategy. To overcome the physical design constraints imposed during the design process, vir-
tual sensing techniques can be used to improve the noise control performance of the active casings.

This report investigates recent advancements aimed at addressing these challenges and highlights
key innovations, such as distributed architectures and remote sensing techniques, that support the
practical implementation of active control strategies. Although these techniques have been applied to
active casing systems, as discussed in Chapter|[5} further research is necessary to fully understand the
limitations and constraints associated with these approaches. Understanding and addressing these
constraints is important to realise the full capabilities of distributed control and remote sensing
techniques for active casing applications.
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