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Chapter 1

Introduction

Noise control has become an increasingly important field of research due to the rising demand
for quieter environments in industrial, domestic, and consumer applications. Traditional passive
noise reduction methods, such as insulation and damping materials, are effective for mid and high-
frequency ranges but often fail to address low-frequency noise effectively. Active Noise Control
(ANC) techniques, which generate anti-noise signals to reduce the noise, offer a promising solution

to this limitation.

Over the past decades, significant progress has been made in the development of adaptive algo-
rithms that form the backbone of ANC systems. Algorithms such as the Least Mean Square (LMS),
Normalized LMS (NLMS), and Filtered-x LMS (FXLMS) have established themselves as the standard
approaches due to their simplicity, robustness, and adaptability to changing acoustic conditions. Ex-
panding on this groundwork, additional algorithms, such as distributed control strategies, have been

developed to tackle the complexity of practical noise control situations.

Additionally, the integration of ANC into active casings and enclosures introduces new challenges
that require specialized algorithmic strategies to balance performance with computational demand.
Techniques such as switched-error FXLMS, partial update methods have been developed to meet
these requirements, expanding the applicability of ANC systems to diverse environments such as

machinery housings, HVAC systems, and machine casings.

This report presents a comprehensive overview of conventional and distributed ANC algorithm:s,
as well as their applications in noise-controlling casings. It further shares a numerical simulation
and evaluation of an Adapt-Then-Combine (ATC) diffusion-based control algorithm for lightweight
casings, focusing on how communication delays, synchronization, and the frequency of sharing in-

formation of filter coefficients may impact system performance.



Chapter 2

Active noise control algorithms

2.1 Conventional ANC algorithms

Adaptive algorithms such as LMS, NLMS and FXLMS are foundational in active noise and vibration
control [1]. The NLMS algorithm updates filter weights iteratively using the steepest descent method

to minimize the error between the input signal x(n) and the error signal e(n), defined by:

w(n+1)=w(n)+ pux(n)e(n), (2.1)

Here, w(n) denotes the filter coefficients at iteration 1, and y is the step size governing the adap-
tation rate. This step size can be dynamically adjusted, for instance, based on the cross-correlation
between x(n) and e(n), to ensure effective adaptation in varying noise environments [2]. NLMS en-

hances LMS by normalizing the step size p with respect to the input signal’s power, calculated as:

p(n) = ————, (2.2)

where a is a constant and € prevents division by zero, thereby improving stability and conver-
gence [3]. FXLMS extends these principles by incorporating a filtered-reference approach. In FXLMS,

the error signal E(z) is given by:

E(z) = [P(z) - S(2) W(2)]X(2), (2.3)

where P(z) is the primary acoustic path, S(z) is the secondary acoustic path, W(z) is an adaptive
digital filter, and X(z) is the reference signal in the frequency domain. The FXLMS method, intro-

duced by [4], dynamically adjusts W(z) based on the difference between P(z) and S(z)W(z), as con-
4
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ceptually illustrated in Fig. 2.1. While ideally W(z) should equal P(z)S~!(z) for optimal cancellation,

exact inverse modeling of S(z) is often impractical.
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Figure 2.1: FXLMS for a broadband feedforward system, where $(z) represents the estimated secondary path.

2.2 Distributed control algorithms

2.2.1 Distributed Multichannel Filtered-x Least Mean Squares (DMEFxLMS) Algorithm

For distributed ANC, the DMEFXLMS algorithm is employed in Wireless Acoustic Sensor Networks
(WASN) comprising N single-channel nodes, each with an error sensor and a secondary source. Each
node adapts its filters to minimize a global cost function using local data and network information,
thereby distributing the computational load. The global filter vector w(#) concatenates all filter vec-

tors from each node:

win) = [w] (m),w] (n),..., wh(n)] (2.4)

where wy(n) contains the IL filter coefficients for node k. Similarly, uy(n) is defined as uy(n) =

T
[ulTk(n),ugk(n),...,u{,k(n)] , where uji(n) is an [IL x 1] vector related to filtered reference signals:

uj(n) = X(n)$j, (2.5)

with X(n) containing reference signal samples and §;; representing secondary path estimates. The

network’s filter update equation is:

N

w(n) =w(n—1)-p ) ur(nex(n). (2.6)

k=1

In a distributed network, each node accesses only its local error signal ex(n), computing only its

term in Equation (2.6). Secondary path estimates §;; (between all secondary sources and a node’s
Page 5 of 25
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error sensor) are determined during a setup phase. Distributed processing uses an incremental strat-
egy [5]: at each time instant n, a full round of updates occurs. Each node calculates its contribution,

adds it to the current filter vector, and passes it to the next node. This process is:
wk(n) :wk_l(n)—yuk(n)ek(n), 1<k<N, (2.7)

where w¥(n) is the local filter vector at node k, and w®(n) = w(n—1). After all N nodes update, w! (n)
becomes the global updated vector w(n), which is then disseminated. Each node k uses its portion
wy (1) to generate its output signal yi(n). This method requires high data transfer speeds and precise
synchronization. For example, a 16 kHz sampling rate necessitates a 32ILN (N — 1) Ksamples/s data

stream for collaborative tasks.

Previous research established collaborative conditions for DMEFxLMS algorithms based on acous-
tic path eigenvalues, forming acoustically coupled node subsets to reduce computational demands
[6, 7]. Collaborative diffusion algorithms were studied and it was found that it outperforms non-
collaborative strategies in highly coupled systems [8]. Additionally, the remote microphone (RM)
technique has been applied to distributed networks [9], with RM-DMEFxLMS achieving performance

comparable to centralized algorithms in ring topologies with incremental communication.

2.2.2  Other distributed control algorithms

Other than DMEFxLMS, other distributed control algorithms exist for static ANC. Multiple Error
FxLMS (MEFXLMS), when formulated for WASNs as DMEFXLMS, distributes adaptive filter calcu-
lations, typically shared in a ring topology with incremental updates. This allows nodes to coopera-

tively estimate and share local information, distributing computational load [5].

Block processing in ANC systems requires careful selection of block size (B) to manage latency,
which is critical for real-time applications. Buffering time (B/f;) must exceed processing time. In
distributed ANC, processing time includes algorithm execution, global state (W) updates, and in-
formation sharing. For an incremental network with N nodes, each block iteration involves 2(N —1)

transmissions of 2L x N coefficients. This total processing time must be less than the buffering time.

Further advancements include the Frequency-domain Partitioned Block FXLMS (FPBEXLMS) al-
gorithm, which uses a block-wise approach for distributed filtering [10]. This method allows multiple
nodes to collaborate incrementally, reducing overall processing time. Distributed ANC systems us-
ing FPBFxLMS perform well if network information exchange is fast enough for real-time operation.
Even with data loss or delay, the system remains stable and performs adequately because each node

can rely on local data while awaiting network updates.

Page 6 of 25
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The FPBFXLMS algorithm has also been implemented using a diffusion strategy [8]. Collaborative
diffusion strategies, where nodes update the global network state based on local information and
neighbor cooperation, outperform non-collaborative approaches, especially in acoustically coupled
systems. Collaboration minimizes acoustic coupling effects and ensures proper algorithm function,

leading to greater noise reduction and stability.

To address computational load and instability in multichannel narrowband ANC (MNANC) sys-
tems, the Diffusion Narrowband FxXLMS (DNFxLMS) algorithm was proposed [11]. DNFXLMS dis-

tributes computational tasks among individual nodes, reducing the burden on a single controller.

The Augmented Diffusion FXLMS (ADFxLMS) algorithm uses neighborhood-based adaptation
and node-based combination. In the adaptation phase, control filter weight vectors from a node’s
neighborhood are combined into an augmented vector, which the node estimates using its error sig-
nal. In the combination phase, estimates from different neighbor nodes are averaged to update the
node’s control filter weights. This algorithm has shown superior performance in noise reduction,
computational complexity, and stability compared to Multitask Diffusion FxXLMS (MDFxLMS) and
Decentralized FXLMS (DCFxLMS) [12]. A robust distributed multi-channel ANC (RDMCANC) al-
gorithm also considers crosstalk and communication limitations, using compensation filters and a
mixed gradient distributed FXLMS (MGDFxXLMS) approach where nodes share local gradients for
global filter updates [13].

Affine projection algorithms can accelerate convergence but typically require complex matrix in-
version. A distributed version of the affine-projection-like algorithm avoids matrix inversion and
uses an incremental collaborative strategy to minimize the power of measured signals in an acous-
tic sensor network (ASN) [14]. This improves convergence speed over LMS-type algorithms. In this
model, each node calculates a portion of the filter update, passing partial results incrementally. The

final updated coefficients are then disseminated across the network.

While approximated multichannel filtered-x affine projection (MFxAP) versions can share pro-
cessing load, they may compromise convergence. The exact distributed MFxAP (EFxAP) algorithm
achieves the same solution as MFxAP without communication constraints, allowing each node to

compute part or all of the inverse matrix [15].

Page 7 of 25
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Summary of Distributed ANC Algorithms

Table 2.2.1: Summary of Distributed ANC Algorithms and Recent Contributions.

Funded by the
European Union

Year Algorithm Key Contribution/Achievement Reference

2015 Distributed MEFXLMS Achieves centralized performance without communica- [16]
tion constraints.

2015 Diffused FPBFxLMS More effective than non-collaborative strategies due to [8]
network information exchange, especially with acoustic
coupling.

2016 Incremental FPBFXLMS Shows acceptable and stable real-time performance de- [10]
spite data loss and delay.

2016 Distributed Affine- Improves convergence speed over LMS-type algorithms by [14]

Projection-Like avoiding matrix inversion and using incremental collabo-
ration.

2017 DMEFXLMS (Collabora- Derived and validated collaborative condition based on [7]

tive) acoustic path eigenvalues.

2017 Distributed ANC (Power Adjusted cost function with node control effort weighting [17]

Constraints) for power constraints.

2020 Diff-FxLMS Investigated for multi-channel ANC systems, proposing a [18]
systematic design procedure.

2020 Exact Distributed MFXAP  Achieves same solution as centralized MFxAP without [15]

(EFxAP) communication constraints, distributing inverse matrix
computation.

2021 Wave-domain ANC Developed a wave-domain ANC system using multi-node [19]
networks.

2022 DNExXLMS Enables NANC systems with more channels under proces- [11]
sor computing power limits.

2023 ADFxLMS Superior noise reduction, computational complexity, and [12]
stability compared to MDFxLMS and DCFxLMS.

2023 RDMCANC Practical solution for distributed ANC overcoming com- [13]

(MGDFXLMS) munication restrictions and crosstalk.
2023 RM-DMEFXLMS Implemented remote microphone technique in dis- [9]

tributed networks.

Page 8 of 25



Chapter 3

Control algorithms for noise controlling

casings

3.1 Switched error FxXLMS

ExLMS algorithms, such as those described in [20, 21], are commonly used due to their ease of im-
plementation and reliability [22]. However, MEFXLMS becomes computationally demanding with
many sensors and actuators. To address this, the Switched-Error FXLMS (SEFxLMS) algorithm was
introduced, using only one error signal at a time with designated switching intervals [23]. While
SEFxXLMS achieves the same steady-state noise reduction as MEFxLMS in active casing noise control,
its slower adaptation rate reduces convergence speed in exchange for lower computational complex-
ity. The Switched Multiple Error FXLMS (SMEFXLMS) [24] offers a balance between SEFXLMS and
MEFXLMS in terms of convergence rate and computational load. Figure 3.1 illustrates the perfor-
mance comparison of MEFXLMS, SEFXLMS, and SMEFXLMS in simulations for a lightweight casing

under a 150 Hz tone disturbance.

Switching algorithms exhibit power fluctuations due to error switching. Algorithm Q,p, which
uses two error switching, outperforms Q,4 (one switching error). Generally, SMEFXLMS adapts
slower than MEFxLMS but significantly reduces computational load. Thus, it suits applications where
noise signal changes are slower than the switching interval and adaptation speed. Partial Update (PU)

algorithms offer alternative solutions.
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3.2 Partial Update algorithms

PU algorithms are beneficial for systems with high computational demands, as they further reduce
complexity [25, 26, 27]. These algorithms selectively update control filter coefficients based on spe-
cific criteria, potentially increasing convergence rates depending on the input signal. For instance,
(28] introduced two partial-update augmented complex-valued LMS (PU-ACLMS) algorithms that
use fewer input samples by predicting stochastic behavior. Leaky versions of PU LMS have also been
applied to ASAC [29, 30]. Table 3.2.1 lists original PU algorithms associated with active device casing
applications [29].

Table 3.2.1: Algorithms tested, in [29], with PU.

Year Authors Algorithm References
1971 B. Widrow and T. Hoff LMS [31, 3]
1971 B. Widrow and T. Hoff NLMS [31, 32]
1995 S.C.Douglas OTU (One Tap Update) LMS (33, 34]
1995 S.C. Douglas max NLMS [33]
1998 T. Aboulnasr, K. Mayyas and T. Eldos =~ M-max NLMS [35, 36]
1997 T. Aboulnasr and K. Mayyas Leaky LMS [37]
1997 T. Aboulnasr and K. Mayyas Selective LMS [38]
1997 S.C. Douglas Sequential & Periodic LMS [39, 40, 26]
2005 M. Godavarti and A.O. Hero PU LMS algorithms [26]

3.3 Other multi-channel algorithms for in-out applications

Multi-channel versions of FXLMS algorithms have been implemented and evaluated [41, 42, 43, 44].
Despite advancements, these algorithms [20, 45] remain preferred in applications such as air condi-
tioning, washing machines, and compressor noise due to their convenience and ease of implemen-
tation. Table 3.3.1 highlights key contributions to multi-channel FXLMS algorithms for in-out noise

propagation scenarios.

Recent work by [51] demonstrated effective noise mitigation using LMS and FXLMS across various
frequencies, achieving significant reductions with optimal step sizes. Subsequently, the error signal
Differential term feedback Variable Step size FXLMS (DVSFXLMS) algorithm was developed by [52],
establishing a nonlinear relationship between step size and error signal. This innovation resulted in

faster convergence and reduced steady-state errors in both simulations and experimental validations.
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Funded by the
European Union

Year  Authors Contribution References
2004 E.Esmailzadeh, A.R. Ohadi and A. Alasty Multi-channel adaptive feedforward control of an acous- [46]
tic duct.

2007  B.Mazeaud and M.A. Galland Multi-channel feedback algorithm for flow duct applica- [47]
tions.

2011  N. Devineni, I. Panahi and P. Kasbekar Multi-channel feedback ANC for HVAC systems. [48]

2018 K. Mazur, S. Wrona and M. Pawelczyk Design and Implementation of Multichannel Global [23]
ASAC for a device casing.

2020 C. Shi, Z.Jia, R. Xie and H. Li Multi-channel feedfoward ASAC system using relative [49]
path based virtual sensing method.

2021  N. Botti, T. Botti, L. Liu, R. Corradi and F. Ripa-  Active Structural-Acoustic Control on interior noise of a [50]

monti

plate-cavity system using FXNLMS algorithm.
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Figure 3.1: Reductions obtained at each microphone using SMEFXLMS algorithm at 150 Hz single tone distur-
bance (using lightweight casing) and normalized step size p,, = 0.005 [24]. Where QI is typically the same as
the SEFXLMS algorithm. Q2A allows adaptation for two sensors with one error switching. Q2B allows adap-
tation for two sensors and switching with two error signals. For the arrangement of the microphones and the

testing setup, refer to [21].
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Chapter 4

Simulations of Adapt then Combine
distributed control algorithm

(ATC-FxLMS) for lightweight casing

application

The ATC diffusion LMS algorithm 4.2 consists of an incremental update followed by a diffusion
update representing a convex combination of estimates from LMS filters fed by spatially distinct
data {di(i),ur(i)}. In the incremental step in 4.2, the coefficients ¢; ; determine which nodes I € Nj
should share their measurements {d;(i),u;(7)} with node k. On the other hand, the coefficients a;
in the diffusion step in 4.2 determine which nodes I € Ny should share their intermediate estimates
{11(i)} with node k. We note that when measurements are not exchanged (i.e., when C =1), the ATC
algorithm 4.2 becomes similar to the one studied in [53], where noisy links are also considered and
analyzed. We further note that this particular ATC mode of cooperation with C = I was originally

proposed and studied in [54], [55] in the context of least-squares adaptive networks.

Cl,k:al’kZOiflENk, (4.1)

Starting with w;(—1) = 0 for all /. Given non-negative real coefficients {c; s, a; } satisfying 4.1, for

each time i > 0 and for each node k, repeat:

13
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Py (1) =wi(i— 1) — pg Z cpreuy(i)(dp(i) - ulT(i)wk(i -1)) (incremental step) (4.2)
ZEA@
wi(i) = Z ap k(i) (diffusion step)
ZEA@

A simulation was performed using predefined data from an existing system consisting of 21 ac-
tuators and 5 error sensors [56], according to the schematic shown in Figure 4.1. A single reference
sensor was positioned inside the casing since there was only one source of disturbance. The focus of
the experiment is about controlling the noise source inside a lightweight casing, where the structure
is made of aluminium grade-based material. In the experiment, two setups were utilized, each with
a different microphone position. Using the first setup from the experiment in [56], the system iden-
tification process resulted in 5 primary paths and 105 secondary paths models in form of FIR filters,
including the reference path. Each FIR model has 128 coefficients. For detailed positioning of the

microphones and actuators, please refer to [56] and [57].

Top

H

corner

error
microphone

Figure 4.1: Setup 1 from previous ASAC experiment [56].

In the simulation, there are acoustic 5 nodes. each node is assumed to communicate with it’s
neighbor assuming through a shared memory. as well it is assumed that the algorithm works in full
diffusion mode, which means that each node is considering all the nodes as neighboring nodes. The
first node (The processor associated with processing the front error signal) also obtains the reference
signal and shares it to its’ neighbors. Moreover, all the nodes in the network share their intermediate

filter gradients with each other (assuming full diffusion).
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4.1 Effect of sharing delay on the ASAC Performance

In case there is a delay within sharing these coefficients, attenuations might become degraded and
instability might occur. This effect was investigated for this predefined system and it was found to

be tolerant until 50 samples delay (down-sampled domain) as shown in Figure 4.2.

Front Error Sensor Right Error Sensor Rear Error Sensor
100 100 ¢

90 / 90 / 90
80 k S0

100

SPL (dB)
2

SPL (dB)
3 =

SPL (dB)

70

60 60 60
50 " L ) 50 L " : 50 L L "
100 200 300 400 500 600 100 200 300 400 500 600 100 200 300 400 500 600
Time (s) Time (s) Time (s)
Left Error Sensor Top Error Sensor Mean SPL
100 100

/

SPL (dB)
SPL (dB)
SPL (dB)

100 200 300 400 500 600 100 200 300 400 500 600
Time (s) Time (s) Time (s)

5 samples delay = ——— 10 samples delay 20 samples delay ——50 samples delay
—— 100 samples delay ANC Off Perfect Communication

Figure 4.2: Attenuations of the microphones with shared intermediate gradients (assuming reference signal is

shared without a delay)

When the reference signal is shared from node 1 to the remaining nodes, practically there will be
a delay caused by the network latency. However, this delay is quite sensitive for sharing this signal
since the regressors of the reference signal on each neighbor nodes is slightly mismatched to the local

node, which leads to instability as shown in Figure 4.3.

However, after sharing the local reference signal with the other nodes, introducing a delay on the
local signal equivalent to the delay that was perceived on the other nodes (assuming synchronization)
enhances the performance of the diffusion algorithm and makes it much more stable as shown in

Figure 4.4.

4.2 Effect of sharing frequency on the ASAC Performance

In practice, it might occur in a realistic network that some coefficients or signals might be unshared
or mis-communicated to the receiving ends due to network interrupts, sharing frequency of the inter-

mediate gradients was also investigated. For this predefined system, the attenuations are unaffected
Page 15 of 25
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Figure 4.3: Attenuations of the microphones with shared intermediate gradients + shared reference signal (No

synchronization)

until a frequency of 400Hz as shown in Figure 4.5, below that frequency attenuations can be de-
graded but instability will not occur because the diffusion algorithm has a condition on the shared
intermediate gradient. In case if it is not shared, it uses the previous local coefficients of the gradient,

otherwise, it is updated with the shared coefficients.

In Figure 4.5, it is shown that the attenuations are unaffected until 400Hz sharing frequency
(assuming the reference signal is continously shared and un-interupted). If the shared reference
signal is affected, this further degrades the attenuations to half of the original as shown in Figure 4.6,

but does not lead the system to instability.

4.2.1 Summary

The simulations demonstrate that interrupts in the communication process can significantly deteri-
orate the ASAC performance when signals are shared among the nodes. However, when the shared
reference signal is perfectly synchronized across the system, the algorithm exhibits greater tolerance
to delays, thereby maintaining stability. Morever, the communication bandwidth required for coeffi-
cient sharing can become extremely high with diffusion algorithms, which may limit the scalability

of the approach in practical implementations.
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Figure 4.4: Attenuations of the microphones with shared intermediate gradients + shared reference signal

(With synchronization)

4.2.2 Future Work

Future investigations will focus on extending the study to other distributed adaptive algorithms
such as CtA-FXLMS and incremental LMS learning. Moreover, it is planned to perform theoretical
calculations of the computational complexity and the required communication bandwidth for data

transfer, in order to evaluate the hardware constraints.
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shared without a delay)
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Figure 4.6: Attenuations of the microphones with shared intermediate gradients + shared reference signal
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Chapter 5

Conclusion

This report reviewed and analyzed a wide range of Active Noise Control algorithms, starting from
conventional approaches such as LMS, NLMS, and FxLMS, and extending to distributed and multi-
channel control algorithms designed for more complex and scalable systems. Distributed ANC algo-
rithms, including DMEFXLMS, FPBEXLMS, and their diffusion-based variants, were shown to pro-
vide effective frameworks for implementing ANC in networked environments. Their ability to share
information across nodes enables collaborative noise reduction while balancing computational loads,

although communication delays and synchronization remain critical challenges.

For noise-controlling casings, specialized algorithms such as Switched-Error FxLMS and Partial
Update strategies were highlighted as practical solutions for reducing computational effort while

maintaining acceptable noise reductions.

The study of the ATC-FxLMS algorithm for lightweight casings provided valuable insights into
the performance of distributed ANC under different network conditions. Results indicated that syn-
chronization of reference signals across nodes is important for maintaining stability, as well, when
sharing of filter coefficients, the system can be tolerant to communication delays, up to certain lim-
its. However, higher communication bandwidth requirements may result in a potential bottleneck

for large-scale implementations.

Overall, the findings underscore the importance of designing ANC algorithms that not only
achieve high noise reduction but also consider practical constraints such as computational com-
plexity, communication bandwidth, and system stability. Future work should focus on extending
the simulations to hardware implementations. This includes analyzing hardware requirements, and
developing strategies to optimize communication efficiency. These directions will support the ad-

vancement of scalable, robust ANC systems for modern engineering applications.
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